If it's not what You are looking for type in the equation solver your own equation and let us solve it.
96+40x+4x^2=96
We move all terms to the left:
96+40x+4x^2-(96)=0
We add all the numbers together, and all the variables
4x^2+40x=0
a = 4; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·4·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*4}=\frac{-80}{8} =-10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*4}=\frac{0}{8} =0 $
| 3.6+x=7.9 | | -2x+5=- | | -(-1-4x)=4(x+2)2+6 | | 5x×x+5=0 | | F(t)=300(1.40)t | | -77.5=–22.5(x–10) | | (5u+6)(5-u)=0 | | 3x-6/2x=17x2 | | 5(x-8)+10=(5+2) | | 8n+4(1+5)=-6n=14 | | 45=6x+3x | | 4m=2m | | 9-n=2n | | y+37=180 | | 3*0+2y=62 | | -3(b+1=2(1-b) | | 5x=-7x+24 | | 3y+5=2y+17 | | −3x+4x=−3 | | 2y+23=5y+5 | | -3x+37=x-7 | | 2x-1+25=3x-6•2 | | 7m-10=0 | | 16+6x=9-7x | | 4(-7p+8)-6p=-206 | | -46x+16=3x+5 | | 38+x+32=90 | | 6+5x=4+x | | |2n+5|=1- | | P=6q+1 | | 3.x=12 | | -6(-3x-6)+3=165 |